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Abstract. Using a model of an open spin chain that is exactly soluble by means of a Bethe
ansatz, we study the effects of a boundary magnetic field and an impurity spin coupled to the
chain. An impurity spin only scatters forward, while the boundary is purely a back-scatterer.
Two parameters for the impurity and one for the boundary permit us to mimic the effect of real
magnetic impurity, with both forward and backward scattering.

Studies of impurities in one-dimensional correlated quantum systems have a long history:
field theoretical methods such as those of bosonization and boundary conformal field
theory have been applied to describe the effect of local potentials and to study the
transport properties in the presence of these—see, e.g. [1–7]. On the other hand, exactly
soluble models of one-dimensional quantum systems have provided results essential to the
understanding of a number of physical problems involving impurities: examples are the
Kondo effect [8, 9], point contact spectroscopy of quantum wires [10] and x-ray absorption
singularities [11, 12]. The impurities studied within this approach are either static ones,
i.e. boundary potentials in open systems, or dynamical ones such as those in the Kondo
problem. In this paper we wish to compare the behaviour of these in a simple integrable
model, namely an open spin-1

2 antiferromagnetic Heisenberg chain, coupled to an integrable
spin-S ′ impurity, subject to boundary magnetic fields at its ends. Within the framework
of the quantum inverse scattering method [13], such an impurity can be described by a
two-parameter family of operatorsLS ′(λ+ λ0), which can be expressed in terms of spin-S ′

operators:

LS ′(λ) = 1

λ+ i/2+ iS ′

(
λ+ i/2+ iS ′z iS ′−

iS ′+ λ+ i/2− iS ′z

)
〈S′2〉 = S ′(S ′ + 1). (1)

Hereλ is a spectral parameter. In reference [14] impurities of this type withλ0 = 0 in a
periodic chain have been studied (see also references [15, 16] for impurities of this type in
a spin-S > 1

2 chain). TheLS ′ -operators satisfy the Yang–Baxter equation with the vertex of
the host (equation (1) with spinS ′ = 1

2); thus the associated transfer matrices with different
spectral parameters commute. This commutativity is the necessary and sufficient condition
for exact integrability: one can construct an infinite number of local conservation laws for
the system (e.g. the Hamiltonian is the logarithmic derivative with respect to the spectral

§ E-mail: frahm@itp.uni-hannover.de
‖ E-mail: zvyagin@ilt.kharkov.ua

0953-8984/97/459939+08$19.50c© 1997 IOP Publishing Ltd 9939



9940 H Frahm and A A Zvyagin

parameter of the transfer matrix). At the impurity vertex, which defines the integrable spin
chain, the additional shiftλ → λ + λ0 (see also [17]) of the spectral parameter in (1)
leads to a two-parameter family(S ′, λ0) characterizing the impurity [18]. In addition to the
impurity, a (boundary) magnetic field acting on the two boundary sites can be incorporated
using the reflection equation formalism [19, 20]. This leads to the Hamiltonian

H =
L−1∑
j=1

Sj · Sj+1+Himp +Hbound . (2)

As a peculiarity of the quantum inverse scattering method, the eigenvalues of the system
do not depend on the position of the impurity spin in the chain. The reason for this is
that all vertices, including the impurity one, are forward scatterers by construction. Hence
they produce the phase shifts, but have no amplitude for reflection. A boundary, on the
other hand, is a perfect back-scatterer with vanishing transmission. The combination of an
impurity vertex and a boundary field thus mimics a real impurity, which should have both
reflection and transmission properties.

In constructing the Hamiltonian, we have to distinguish two different situations, which
are described by the same Betheansatzequations: if the impurity spin is added in the
bulk—say, situated between sitesm > 1 andm+ 1 < L of the system (2)—we find (here
{ , } denotes an anticommutator)

Himp = J0
(
(Sm + Sm+1) · S′ + {Sm · S′,Sm+1 · S′}
+2λ0Sm · (S′ × Sm+1)+ (λ2

0− 2S ′(S ′ + 1))Sm · Sm+1
)

Hbound = h1S
z
1 + hLSzL J0 = J0(S

′, λ0) =
((
S ′ + 1

2

)2

+ λ2
0

)−1

.

(3)

Note that the impurity contribution to the Hamiltonian forλ0 = 0 coincides with the one
studied in reference [14]. The second possibility is to put the spin-S ′ impurity vertex at
one end of the chain. The corresponding Hamiltonian can be obtained from (3) by making
the replacementSm → h1ẑ (this property holds for any SU(2)-symmetric Bethe-ansatz-
integrable system). The combined contribution from boundary fields and impurity spin (at
site ‘0’) is given by

Himp +Hbound = J0

(
S′ · S1+ h1

[
S ′z + 2λ0(S

x
1S
′y − Sy1S ′x)+ {S ′z,S′ · S1}

+
(
λ2

0− S ′(S ′ + 1)+ 1

4

)
Sz1

])
+ hLSzL (4)

(see also reference [21]). Upon tuning of the system parameters,Himp simplifies in a
number of limits:

(i) S ′ = 1
2, λ0 = 0,∞: the model reduces to the well known open spin-1

2 Heisenberg
chain withL+ 1 andL sites respectively;

(ii) h1 = 0: in this case the impurity spin (at the edge) is coupled by an exchange
term toS1; the sign and magnitude of the coupling constantJ0 depend onλ0, which can be
chosen either purely real or purely imaginary in this case, and on the impurity spin valueS ′.

Note that the edge impurity Hamiltonian (4) forh1 = 0 has a ‘natural’ physical form: there
are no three-spin interactions and no changes of coupling between the host spins (so the
impurity–host link differs from other links, and the spin value of the impurity is different
from the ones of the host).
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The model defined above can be solved using the algebraic Betheansatz. The
eigenvalues and eigenfunctions ofH are determined by solution of the Betheansatz
equations (BAE):

(
e1(λj )

)2L
e2S ′(λj + λ0)e2S ′(λj − λ0)eξ1(λj )eξL(λj ) =

M∏
k=1,k 6=j

e2(λj − λk)e2(λj + λk) (5)

where en(x) = (x + (i/2)n)/(x − (i/2)n), L is the number of sites,M is the number
of down spins (the total spin isSz = L/2 + S ′ − M), {λj }Mj=1 is the set of rapidities,
parametrizing the eigenfunctions and eigenvalues, and the boundary magnetic field enters
throughξ1,L = −1+ 1/h1,L. Later, to take the thermodynamic limit in a controlled way,
we will consider two situations: (a) lattices with an even number of sites (including the
impurity one) and vanishing boundary fieldsh1,L = 0 (i.e. without the phaseseξ1,L in
(5)); and (b) lattices with an odd number of sites and bothh1,L finite. Each solution of
equations (5) corresponds to an eigenstate of the Hamiltonian (2) with the energy

E({λj }) = EFM −H
(
L

2
+ S ′

)
− 1

2

M∑
j=1

(
1

λ2
j + 1

4

− 2H

)
(6)

whereEFM = 1
4(L − 1) + J0C + 1

2(h1 + hL) is the energy of the ferromagnetic state
(C = (λ2

0 + 2S ′)/4 for the bulk impurity,C = S ′/2 for the impurity at the edge) andH is
the bulk magnetic field. To solve the BAE (5) for the open chain we follow the procedure
of references [22, 23]: extending the set of rapidities to{λj }Mj=−M with λj = −λ−j for
j = −1, . . . ,−M andλ0 = 0, equations (5) can be rewritten as

(
e1(λj )

)2L+1
e2(λj )e2S ′(λj + λ0)e2S ′(λj − λ0)eξ1(λj )eξL(λj ) =

M∏
k=−M

e2(λj − λk). (7)

In this form the BAE for the open chain considered here are similar to the ones for
the periodic system [14], with the obvious replacementsL → 2L + 1 andM → 2M + 1
(reflection), and several ‘impurity-like’ terms in the lhs: two (because of reflection) of them
correspond to the impurity vertex, and one is connected with each boundary. The remaining
ones are due to the extended set of rapidities introduced above. We note here that in (7) the
boundary fields mimic impurities with effective ‘spin’Seff = ξ1,L/2 which is a function
of the boundary magnetic field: forh1,L = 0 it is infinite (leading to an effective twist of
π at the free boundary). Ath1,L = 1 the effective spin changes its sign leading to the
appearance of a complex root of the BAE in the ground-state configuration in this regime.
Finally, for h1,L→∞ we haveSeff = − 1

2, effectively removing one site from the system.
In addition to realλ0 which corresponds to weak antiferromagnetic coupling of the

impurity spin to the host, we can chooseλ0 to be purely imaginary in the system with
open boundaries. Small imaginaryλ0 leads to increasing antiferromagnetic coupling of the
impurity; at λ0 = ±i(S ′ + 1

2) the coupling between the impurity and the host changes to
ferromagnetic coupling, leading to an effective impurity spinS ′ + 1

2. We will show that for
the low-temperature low-magnetic-field case it corresponds to the effective asymptotically
free spinS ′. Hence, at least for the impurity spin situated at the edge, one covers any
possiblephysicalsituations of the edge impurity spinS ′ coupled via one link of any possible
exchange coupling to the host (at zero boundary field). Once again we want to emphasize
that while the BAE do not depend on the impurity position, i.e. describe both the bulk and
edge impurity, the systems are clearly described by different Hamiltonians. The difference
is present in the set of eigenfunctions. In the following we shall consider realλ0 mostly.
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This is the most interesting case of moderateantiferromagnetic coupling between impurity
and host.

Let us first study the case of non-negativeξ1,L (i.e. h1,L 6 1). The solution of the
BAE (7) is straightforward, along the lines of references [14, 24, 25]. The energy can be
written as a series inL−1: E = LE∞ + Ei + L−1Emes + · · ·. The energy density of the
bulk E∞ is the same for the periodic system and for the open one, and does not depend on
characteristics of the impurity. The mesoscopic correctionsEmes determine the asymptotics
of the correlation functions, and will be considered later. Now we will concentrate on the
boundary and impurity effects of orderL0, namelyEi . Taking the thermodynamic limit
L,M → ∞ with their ratio fixed, the solutions of the BAE can be classified in terms of
so-called ‘strings’λj = λj,k + i k/2, wherek = −(n − 1),−(n − 3), . . . , (n − 1). The
integern denotes the length of the string. Introducing densities ofn-strings,ρn(λ), and the
corresponding ‘hole’ densities,ρ(h)n (λ), the BAE can be written as an infinite set of coupled
integral equations:

ρ(h)n (λ)+
∞∑
k=1

∫
dλ′ Ank(λ− λ′)ρk(λ′)

= an(λ)+ 1

2L
(an(λ)+ an+1(λ)+ δn>1an−1(λ)+4n,S ′(λ)+4n,ξ (λ)) (8)

where the kernels are

An,k(x) = an+k(x)+ 2
min(n,k)−1∑

l=1

an+k−2l(x)+ a|n−k|(x)

with an(x) = 2n/π(4x2+ n2), a0(x) = δ(x) and

4n,S ′(λ) =
min(n,2S ′)∑

l=1

(an+2S ′+1−2l(λ+ λ0)+ an+2S ′+1−2l(λ− λ0))

4n,ξ (λ) =
n∑
l=1

(an+ξ1+1−2l(λ)+ an+ξL+1−2l(λ)).

(9)

Note that 2M + 1 = ∑
n n`n, where `n = 2L

∫
dλ ρn(λ) is the number ofn-strings.

The equilibrium state at temperatureT is obtained by minimization of the free energy
F = E − T S (S is the combinatoric entropy). This procedure leads to an additional set of
non-linear integral equations for the dressed energiesεn(λ) = T ln(ρ(h)n (λ)/ρn(λ)):

T ln[1+ exp(εn/T )] = nH − πan(λ)+ T
∞∑
k=1

∫
dλ′ Ank(λ− λ′) ln[1+ exp(−εk/T )].

(10)

Note that only the bulk fieldH enters these equations, while the impurity and the boundary
field h only affect the string densities according to (8). The ground-state configuration at
T = 0 is determined by the host alone through equation (10): all states with negative
dressed energyεn(λ) < 0 have to be filled. Using equations (8) and (10), the free energy
can be written as

F(H, T ) = LF∞(H, T )+ 1−
(
S ′ + 1

2

)
H − 1

2
T

∞∑
n=1

∫
dλ ln(1+ exp(−εn/T ))

× {an(λ)+ an+1(λ)+ δn>1an−1(λ)+4n,S ′(λ)+4n,ξ (λ)}. (11)
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We now study theT = 0 ground state. From equations (10) one finds that onlyε1 may
be negative. Hence, the ground state is constructed by filling the Dirac sea of 1-string states
with negative energy. TheT → 0 limit of (10) for n = 1 can be written as

ε1(λ) = 1

2
H − π

2 cosh(πλ)
+
(∫ −3
−∞
+
∫ ∞
3

)
dµ J(λ− µ)ε1(µ). (12)

Here the boundaries3 of integration are to be determined from the conditionε(±3) = 0
as a function of the bulk magnetic fieldH . The kernel is given in terms of its Fourier
transform as(1+ exp(|u|))−1. For vanishing bulk fieldH one finds3 = ∞; the ground
state is obtained by filling the sea of 1-strings completely. In this case the ground state has
spin S − 1

2 for the case ofL+ 1 even andh1,L = 0, and hasSz = − 1
2 for L+ 1 odd and

non-zero boundary fields. Its energy is (ψ is the digamma function)

E0− EFM = −
(
L+ 1

2

)
ln 2+ π

4
− 1

4

∑
x=±λ0

(
ψ

(
2S ′ + 3

4
+ ix

)
− ψ

(
2S ′ + 1

4
+ ix

))
− 1

4

∑
j=1,L

(
ψ

(
ξj + 3

4

)
− ψ

(
ξj + 1

4

))
. (13)

Since the spectral properties of the system do not depend on the location of the impurity,
equation (13) applies also to the case where the spinS ′ is situated at the edge andh1,L = 0.
In particular, this allows one to compute the local correlation function〈S′ · S1〉 for the
system (4) by taking the derivative of the ground-state energy w.r.t.J0. In the region of
antiferromagnetic coupling this quantity varies between 0 and−(S ′ + 1)/2 as a function
of the parameterλ0. As an example, we find the enhancement of the antiferromagnetic
correlations at the edge forJ0 = 1 andS ′ = 1

2 to be (see also reference [26] for a recent
numerical study of this quantity)

−〈S0 · S1〉 = 1

4
(1− 3ζ(3)) ≈ 0.6515. . . . (14)

In the following we consider the ground-state properties of the impurity and the
boundaries in a magnetic fieldH separately. Fourier transforming theL0-terms in (11)
for vanishing boundary fields (i.e. putting4nξ ≡ 0), we obtain (f (±)(x) = θ(±x)f (x),
θ being the step function)

Ei = Ei(H = 0)−H
(
S ′ − 1

2

)
+
∫

du

8π

ε
(+)
1 (u)

cosh(u/2)

(
1+ e−|u|/2+ 2 cos(uλ0)e

−(S ′−1/2)|u|).
(15)

In the integrand, the last term is due to the impurity, while the second one is a consequence
of the open-chain boundary conditions.

For small values of the bulk magnetic fieldH � 1, i.e. Zeeman splitting small compared
to the bandwidth, the Fredholm equation (12) can be transformed into a sequence of Wiener–
Hopf equations. The latter can be solved perturbatively [27], giving3 = −(1/π) ln(H/H0)

with H0 =
√
π3/e. The same procedure applied to the equation for the density of 1-strings

(equation (8)) gives the leading asymptotics for the magnetization:

Mz = Mz
edge +Mz

imp

Mz
edge =

1

2

(
1

2|lnH/H0| −
ln 1

2|lnH/H0|
4(lnH/H0)2

)
+ · · ·

Mz
imp = µ

(
1+

∑
σ=±

(
± 1

2|lnH/Hσ | −
ln 1

2|lnH/Hσ |
4(lnH/Hσ )2

))
+ · · · .

(16)
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HereH± = H0e±πλ0. There is a resonance at|lnH/H0| = π |λ0|; henceTK = H0e−π |λ0|

can be considered as the usual Kondo temperature. Since the parameterλ0 breaks parity, we
have two contributions to the impurity magnetization, unlike in the situation for the periodic
system [14] or the ordinary Kondo problem with chiral states. In the limit of small fields, this
difference can be neglected; for high fields, it is essential. ForH � TK we takeµ = S ′ − 1

2
and the upper sign in (16), which means that the impurity spinS ′ is (under)screened in the
ground state leading to an effective spinS ′ − 1

2 which is asymptotically free, analogously
to the usual Kondo effect. For a strong bulk field, 1� H � TK the effective spin is
µ = S ′ (the lower sign in (16)) and is also asymptotically free. The parameterλ0 can be
used to shift the resonance, so the Kondo effect is maximal forλ0 = 0, and disappears
for |λ0| → ∞. (BecauseJ−1

0 = λ2
0 + (S ′ + 1

2)
2, these limits correspond to strong or

weak antiferromagnetic coupling of the impurity to the host, respectively.) ForS ′ = 1
2

a single spin is added to the chain, giving a singlet ground state with impurity magnetic
susceptibilityχ = (2/π2) coshπλ0 ∼ T −1

K . Note, however, that due to the geometry there
is the logarithmic contributionMz

edge to the magnetization of the system, which for small

fields is much stronger than the linear one due to anS ′ = 1
2 impurity.

The analysis of the finite boundary magnetic field is completely analogous to that for
the impurity. Considering the system without impurity, we find

Mz = Mz
edge +Mz

ξ1
+Mz

ξL

Mz
ξ =


1

4

{
−1+ (ξ − 1)

|lnH/H0| + · · ·
}

for ξ � |lnH/H0|

− 1

π2(ξ − 1)
|lnH/H0| for ξ � |lnH/H0|.

(17)

As discussed above, the contribution−1/4 toMz
ξ in a vanishing bulk field is due to the fact

that we have to consider lattices of odd size in the presence of boundary fields. Note that
equation (17) contains thecompletecontribution to the magnetization due to the addition
of the boundary potential. Alternatively, the magnetization of the boundary spin alone
may be extracted from theξ -dependence of the ground-state energy (15) (see, e.g. [28]).
For large boundary fields the result coincides with (17), while for small ones (ξ large) the
expectation value of the boundary spin is only half of the expression given here. As was
shown in reference [25], the boundary magnetization vanishes for zeroh, H andT , while
the edge susceptibility is finite. Unlike the situation for the spin impurity, the boundary
magnetization can never exceed1

2. This implies that a boundary potential cannot mimic a
Kondo impurity with higher spin.

An effective spin of the boundaryξ1,L/2 = ± 1
2 corresponds to the addition (removal)

of one site to (from) the chain, with finite zero-field susceptibility. The edge magnetization
is known for boundary fieldsh1,L 6 1, i.e. effective boundary spinξ1,L > 0 [25].
For −1 < ξ1,L < 0 there appear bound states parametrized by complex rapidities
λ = (i/2)(1 − 1/h1,L), localized at the edges. Taking these roots into account, the
corresponding contribution to theH = 0 ground-state energy is again given by (13).
Similarly, we find that the boundary magnetization is still given by (17), hence varying
smoothly withh1,L, despite the appearance of localized levels.

Note, that due to the effective Kondo-like energyTK = H0 for the boundary, a
perturbative analysis of the Fredholm equation atH � TK ∼ 1 is not possible. Because
the bandwidth is now of the same order, the host’s magnetization saturates atH = Hs = 2
before the effectiveTK is reached. In this case the impurity magnetization becomesS ′; the
boundary one is1

2.
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For low temperatures one can use the Sommerfeld approximation to calculate the
contributions to the (zero-field) susceptibility and low-temperature specific heat (c = γ T )
from the impurity and boundary, respectively. For the impurity we findγimp/χimp =
2π2/3 for S ′ = 1

2, i.e. the universal Fermi liquid formula. ForS ′ > 1
2 one obtains

the Curie behaviourχimp ∝ (S ′2 − 1
4)/T and the remnant impurity entropySimp =

sinh(2S ′H/T )/sinh(H/T ). For the boundary a similar behaviour is found due to the
remnant spin for non-zeroh1,L.

The high-temperature behaviour of the impurity is similar to that of a free effective
spin S ′ in a magnetic fieldH with a Curie-like law for the zero-field susceptibility and a
Schottky anomaly for the specific heat.

The case in which the bulk magnetic fieldH and the boundary oneh are connected to
each other, e.g. viah = (1− g)H , with the effectiveg-factor of the boundary, deserves
special treatment. At least, ifH is small enough, and/org ∼ 1, the behaviour of the
boundary magnetization is similar to the expression in (17). For larger fieldH , the
perturbative solution as outlined above fails and the integral equations should be studied
numerically.

Now we calculate finite-size corrections, using standard Euler–Maclaurin series for the
Betheansatzequations [29]. The result is

Emes = πvF
[
(M −mL−2)2

2z2
+N+ − 1

24

]
. (18)

Herem is the density of down spins,z is the dressed charge (its value varies from 1 to 1/
√

2
as the magnetic bulk fieldH decreases fromHs to zero), andN+ is the number of particle–
hole excitations near the Fermi point. The parameter2 is the phase shift at the Fermi point.
It is produced by the edge, boundary and impurity, and it is related to the corresponding
contributions to the magnetization via the Friedel sum rule. For vanishing magnetic fields,
the Fermi shift 22 is an integer, so it can be removed fromEmes by making an appropriate
choice ofM. Note that because only open boundary conditions are considered in this paper,
there are no states carrying a finite current (i.e. transfer of excitations between two Fermi
points) in (18).

To summarize, we find that the behaviours of the impurity in an open and a periodic
chain are very similar for small magnetic fieldsH . TK , while a difference appears for
large magnetic fields due to the broken parity for non-zeroλ0. Comparing the effect of the
boundary potential to that of the impurity, we find two important features: (1) there is no shift
of the Kondo resonance; and (2) the boundary potential cannot mimic the underscreened
behaviour of the impurity with higher spin. Finally, we would like to stress that the
appearance of a local level for sufficiently large boundary fields (i.e.ξ1,L < 0) does not
affect the low-energy physics.

As a by-product, we emphasize that, for vanishing boundary fields, the small-H

behaviour of the impurity spin situated at the edge, and coupled antiferromagnetically
through a single link to the open chain, is similar to that of the impurity situated in the
bulk (for any boundary conditions) with coupling given by (3), i.e. exchange with two
neighbouring spins in the host and additional three-spin interaction. The difference reveals
itself in the mesoscopic (finite-size) corrections—namely, by the absence of current-carrying
excitations. The impurity-induced Fermi phase shift is the same for the open and periodic
cases, as are the Fermi velocity and dressed charge in (18). The differences may manifest
themselves in mesoscopic finite-size effects, i.e. asymptotics of correlation functions, or in
persistent current-like and Coulomb blockade oscillation effects [30, 31].
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